
 

 

INTRODUCTION 

 Extracellular matrix remodeling in which the structure and/or 

distribution of collagen and elastin fibers in the urinary bladder wall are 

modified has been associated with dysfunction [1]. Histological images 

are useful in studying microstructural changes, however, quantifying 

elastin content in these images is challenging. Specifically, the 

Verhoeff-van Gieson’s (VVG) stain is known to effectively 

differentiate elastin fibers with sharp intense contrast, although it also 

stains cell nuclei and other connective tissue [2]. Despite having 

limitations, the stain is relatively easy, and elastin has high affinity to 

the dye, making VVG one of the most common elastic tissue stains [3].  

 Analyzing amounts of elastin in bladder tissue with VVG 

histologies has long been done qualitatively [4, 5]. Yet, quantitative 

attempts with VVG micrographs are less common, and may include 

visually scoring fiber density [6, 7], or estimating area fraction in a 

region of interest by thresholding the dark fibers from the light 

background [8, 9]. The primary limitation with the simple thresholding 

scheme is that cell nuclei and other noise are not removed by the cutoff 

value, or more strict cutoffs significantly erode the elastin fibers. To 

solve this issue, prior studies relied on substantial manual 

postprocessing and homogenization of connective tissue [8, 10]. 

Alternatively, computationally intense methods have been proposed, 

however limitations of these are that they either use proprietary software 

[10] or unsupervised image transforms to segment fibers [11]. Our goal 

is to improve on the latter approach by simplifying the segmentation 

procedure and by adding a machine learning postprocessing step to 

reduce the manual processing of large data sets. 

 Random forest [12] is a type of machine learning algorithm, and is 

regarded one of the best overall for prediction problems [13]. In short, 

the model fits an output dataset by building a decision tree used to 

interpret the input parameters [14]. Then, bootstrapping the data 

produces a forest of decision trees, and its final prediction is typically 

the average or most frequent result from the forest. This makes the 

algorithm robust to outliers, missing data, and irrelevant parameters. 

Random forest is easy to implement, fast to train, and has been applied 

to histology problems before [15]. Yet, its application to identify elastin 

in bladder tissue is novel and presents unique challenges. 

 The current work was initiated with a proof-of-concept by training 

a random forest algorithm on a pseudo dataset representative of VVG 

stained bladder tissue after simple thresholding to ensure feasibility. 

Then, we developed a software for processing true histology specimens. 

The software is used to, first, segment histology images and, second, to 

label the segments as elastin fibers or not. A segmenting protocol as 

simple as thresholding was enhanced by preprocessing more powerful 

image transforms. Then, the labelling process allows for multiple 

researchers to easily train a new elastin classification algorithm. When 

the random forest is sufficiently trained by showing reliable accuracy, 

it can automatize the quantification of elastin area fractions in large data 

sets, which will significantly improve the time needed for analysis. 

  

METHODS 

A set of 35 VVG stained rat bladder wall microscopy images was 

contributed from a separate study for use. Image preprocessing starts 

when images are uploaded to the custom-made software. Each image is 

treated with a combination of transformations that were found to be 

generally successful at isolating the specific components of interest and 

masking the background noise. For every image, a set of 50 masks with 

varying levels of strictness is obtained by tweaking the combination of 

image transforms. Then, segmentation is done by a researcher choosing 

the strictness of the final mask with a slider to best capture elastin and 

remove noise, as shown in Figure 1. Combining varying image 

transforms (i.e., thresholding, contrast normalization, dilation, noise 
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reduction) and then sorting the resulting image masks by the number of 

pixels masked allows the researcher to leverage these powerful 

techniques. This protocol was implemented into a web application using 

the python Bottle library. The software is hosted locally in the research 

lab, and lab members can login to easily segment images with this 

enhanced thresholding method, or label objects extracted from images. 

Once an image is segmented, each object isolated by the mask is 

extracted, and on a different screen, shown in Figure 2, a researcher can 

label the objects based on their expertise. Furthermore, objects may 

carry labels from multiple researchers, and this is in fact encouraged as 

some objects are ambiguous and multiple opinions will reduce bias. 

 

RESULTS 

 The segmentation screen (Figure 1) allows quick masking of cells 

and elastin by utilizing preprocessed image transformations that are 

more powerful than simple thresholding. The mentally taxing process 

of tweaking the image transformations is supplanted with simply 

selecting more/less masking from the set of preprocessed transforms. 

Segmentation is faster and requires less image analysis intuition. 

 

 

 

 
 

Figure 1:  Segmentation screen utilizing enhanced thresholding 

method. Black/gray slider at the bottom has been adjusted so that 

cells and elastin are masked (green highlights) as best possible. 

 

 The labelling screen (Figure 2) presents individual microstructure 

for the researcher to identify. A given histology image may have 

between 50 – 200 objects isolated after segmentation, and it can take a 

time near 5 – 10 minutes to fully label an image. Since the software is 

hosted locally, loading and saving times are often near instant. This 

approach is faster and easier than the proof-of-concept method in which 

image files of isolated objects were labelled correspondingly in a 

spreadsheet.  Data labels are used to train random forest predictions. 

 

DISCUSSION  

 This histological elastin extraction software shows promise for 

estimating area fraction of elastic fibers in VVG stained tissues. Other 

means of quantifying elastin in tissues include commercial assays or 

Western blots. However, these procedures consume the sample and so 

the tissue morphology cannot be assessed from the same sample. 

Scanning electron and confocal microscopy are also used to capture 

images of elastin, although these technologies are more cost prohibitive. 

  

 
 

Figure 2: Labelling screen prompts user to identify if an object is 

elastin. Extracted object is shown with context (left) and also 

magnified with outline (right) for clarity. 

 

 Current limitations of this study are microstructure components 

that are not fully separated during segmentation. For example, an elastin 

fiber intersecting a cell are both joined as one object and cannot be 

labelled accurately. Next steps include solving this limitation by 

developing a secondary segmentation option when a researcher 

encounters this scenario during labelling.  

 As the development dataset is small, more histology images from 

bladder tissue are to be added. Then, a new random forest algorithm will 

be trained and tested on the data using this software. Fully labelled data 

is to be split 80/20 for tuning algorithm hyperparameters. That is, 80% 

of the data is used to train and 20% is used to test the algorithm. Random 

forest parameters including number of trees and branch splitting criteria 

will be optimized with 5-fold cross validation to assess accuracy. The 

model will also be tested on new data to further validate.  

 Later steps include implementing and comparing the accuracy of 

other machine learning schemes such as Support Vector Machine and 

Naïve Bayes classifiers.  
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