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INTRODUCTION

Extracellular matrix remodeling in which the structure and/or
distribution of collagen and elastin fibers in the urinary bladder wall are
modified has been associated with dysfunction [1]. Histological images
are useful in studying microstructural changes, however, quantifying
elastin content in these images is challenging. Specifically, the
Verhoeff-van Gieson’s (VVG) stain is known to effectively
differentiate elastin fibers with sharp intense contrast, although it also
stains cell nuclei and other connective tissue [2]. Despite having
limitations, the stain is relatively easy, and elastin has high affinity to
the dye, making VVG one of the most common elastic tissue stains [3].

Analyzing amounts of elastin in bladder tissue with VVG
histologies has long been done qualitatively [4, 5]. Yet, quantitative
attempts with VVG micrographs are less common, and may include
visually scoring fiber density [6, 7], or estimating area fraction in a
region of interest by thresholding the dark fibers from the light
background [8, 9]. The primary limitation with the simple thresholding
scheme is that cell nuclei and other noise are not removed by the cutoff
value, or more strict cutoffs significantly erode the elastin fibers. To
solve this issue, prior studies relied on substantial manual
postprocessing and homogenization of connective tissue [8, 10].
Alternatively, computationally intense methods have been proposed,
however limitations of these are that they either use proprietary software
[10] or unsupervised image transforms to segment fibers [11]. Our goal
is to improve on the latter approach by simplifying the segmentation
procedure and by adding a machine learning postprocessing step to
reduce the manual processing of large data sets.

Random forest [12] is a type of machine learning algorithm, and is
regarded one of the best overall for prediction problems [13]. In short,
the model fits an output dataset by building a decision tree used to
interpret the input parameters [14]. Then, bootstrapping the data

produces a forest of decision trees, and its final prediction is typically
the average or most frequent result from the forest. This makes the
algorithm robust to outliers, missing data, and irrelevant parameters.
Random forest is easy to implement, fast to train, and has been applied
to histology problems before [15]. Yet, its application to identify elastin
in bladder tissue is novel and presents unique challenges.

The current work was initiated with a proof-of-concept by training
a random forest algorithm on a pseudo dataset representative of VVG
stained bladder tissue after simple thresholding to ensure feasibility.
Then, we developed a software for processing true histology specimens.
The software is used to, first, segment histology images and, second, to
label the segments as elastin fibers or not. A segmenting protocol as
simple as thresholding was enhanced by preprocessing more powerful
image transforms. Then, the labelling process allows for multiple
researchers to easily train a new elastin classification algorithm. When
the random forest is sufficiently trained by showing reliable accuracy,
it can automatize the quantification of elastin area fractions in large data
sets, which will significantly improve the time needed for analysis.

METHODS

A set of 35 VVG stained rat bladder wall microscopy images was
contributed from a separate study for use. Image preprocessing starts
when images are uploaded to the custom-made software. Each image is
treated with a combination of transformations that were found to be
generally successful at isolating the specific components of interest and
masking the background noise. For every image, a set of 50 masks with
varying levels of strictness is obtained by tweaking the combination of
image transforms. Then, segmentation is done by a researcher choosing
the strictness of the final mask with a slider to best capture elastin and
remove noise, as shown in Figure 1. Combining varying image
transforms (i.e., thresholding, contrast normalization, dilation, noise



reduction) and then sorting the resulting image masks by the number of
pixels masked allows the researcher to leverage these powerful
techniques. This protocol was implemented into a web application using
the python Bottle library. The software is hosted locally in the research
lab, and lab members can login to easily segment images with this
enhanced thresholding method, or label objects extracted from images.
Once an image is segmented, each object isolated by the mask is
extracted, and on a different screen, shown in Figure 2, a researcher can
label the objects based on their expertise. Furthermore, objects may
carry labels from multiple researchers, and this is in fact encouraged as
some objects are ambiguous and multiple opinions will reduce bias.

RESULTS

The segmentation screen (Figure 1) allows quick masking of cells
and elastin by utilizing preprocessed image transformations that are
more powerful than simple thresholding. The mentally taxing process
of tweaking the image transformations is supplanted with simply
selecting more/less masking from the set of preprocessed transforms.
Segmentation is faster and requires less image analysis intuition.
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Figure 1: Segmentation screen utilizing enhanced thresholding
method. Black/gray slider at the bottom has been adjusted so that
cells and elastin are masked (green highlights) as best possible.

The labelling screen (Figure 2) presents individual microstructure
for the researcher to identify. A given histology image may have
between 50 — 200 objects isolated after segmentation, and it can take a
time near 5 — 10 minutes to fully label an image. Since the software is
hosted locally, loading and saving times are often near instant. This
approach is faster and easier than the proof-of-concept method in which
image files of isolated objects were labelled correspondingly in a
spreadsheet. Data labels are used to train random forest predictions.

DISCUSSION

This histological elastin extraction software shows promise for
estimating area fraction of elastic fibers in VVG stained tissues. Other
means of quantifying elastin in tissues include commercial assays or
Western blots. However, these procedures consume the sample and so
the tissue morphology cannot be assessed from the same sample.
Scanning electron and confocal microscopy are also used to capture
images of elastin, although these technologies are more cost prohibitive.
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Figure 2: Labelling screen prompts user to identify if an object is
elastin. Extracted object is shown with context (left) and also
magnified with outline (right) for clarity.

Current limitations of this study are microstructure components
that are not fully separated during segmentation. For example, an elastin
fiber intersecting a cell are both joined as one object and cannot be
labelled accurately. Next steps include solving this limitation by
developing a secondary segmentation option when a researcher
encounters this scenario during labelling.

As the development dataset is small, more histology images from
bladder tissue are to be added. Then, a new random forest algorithm will
be trained and tested on the data using this software. Fully labelled data
is to be split 80/20 for tuning algorithm hyperparameters. That is, 80%
of the data is used to train and 20% is used to test the algorithm. Random
forest parameters including number of trees and branch splitting criteria
will be optimized with 5-fold cross validation to assess accuracy. The
model will also be tested on new data to further validate.

Later steps include implementing and comparing the accuracy of
other machine learning schemes such as Support Vector Machine and
Naive Bayes classifiers.
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